

Abu Dhabi Polytechnic Meteorology Department

MET-324 NWP & Num. Analysis

I-Mid Examination 2nd Semester (2018-19)

Instructor: Dr. Nageswara Rao G. Time: 1 Hr. 30 Min.

STUDENT NAME			
STUDENT NUMBER A			
CRN 3 3 1	8 DEPARTMENT	MET	

READ THESE INSTRUCTIONS CAREFULLY

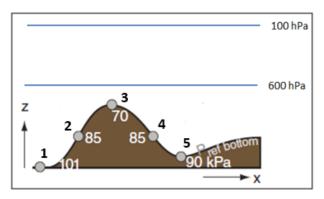
Write your *name*, *number*, *CRN* and department **clearly** in the boxes above.

Answer all questions.

Show **all** your working and use appropriate **units.** Otherwise, you may lose marks.

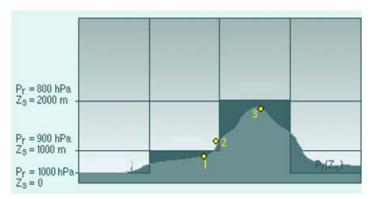
You may use a pencil for all your work.

Answers that are not **clearly readable**, if any, will not be marked.


- All mobile devices are not allowed during examination.
- Abu Dhabi Polytechnic considers cheating or attempting to cheat a serious offense that will result in disciplinary
- action taken against involved individuals.

Section	Score	CLO
1	/60	1
2	/40	2

Total	/20
-------	-----


	2	
Sec	ction-1 (60 Marks)	
1.	Curvature terms in the momentum equations can be neglected in a) Grid Point Models b) Spectral Models c) Non-Hydrostatic Models d) None of the above	(5)
2.	a) Hydrostatic b) Non-hydrostatic c) Basic hydrodynamic d) None of the above	(5)
3.	Suppose today's temperature at a place is 30° C and the temperature tendency due to cold advection is 0.5° C/3 hrs. What will be tomorrow's temperature? a) 34.0° C b) 30.5° C c) 26.0° C d) none of the above	(5)
4.	Isentropic surfaces intersect in a) Free atmosphere b) Boundary layer c) Troposphere d) None of the above	(5)
5. A.	From the following continuity and thermodynamic energy equations, derive a prediction equation for pressure. Show all the steps in the derivation. $\frac{d\rho}{dt} = -\rho \nabla . \vec{V} \text{ and } \frac{dT}{dt} = \frac{RT}{c_p p} \frac{dp}{dt}$	(12)

6. Calculate the σ values for the model reference pressure of 600 hPa at the given 5 points, as shown in the diagram. Model top pressure is given as 100 hPa. Surface pressures are given in kPa.

Α.

7. Calculate the η (eta) vertical coordinate values for the model reference heights 1000 and 2000 m for the 3 points, using the data given in the diagram. Model top pressure is given as 100 hPa.

Α.

8. A.	Explain how sigma coordinates introduce errors in PGF calculation with a neat diagram. What is the difference between sigma and eta coordinates? Explain how eta coordinates eliminates the errors in the PGF calculation.	(12)
Sec	tion-2 (40 Points)	
1.	What is the nature of NWP model equations? How do you solve them using Finite Difference method?	(6)
A.		
2.	Giving the expressions for a derivative of a variable (φ) and its finite difference, explain the differences between them, with the necessary diagram.	(8)
Α.		

3.	With the help of a 9-point square stencil and centered difference formula for the derivative, obtain a finite difference expression for the mixed 2^{nd} derivative $(\partial^2 u/\partial y \partial x)$.	(10)
A.		
4	Cive a diagram chavring a O paint agreem storeil. Civing the Taylor's averaging agriculture	(1.5)
4.	Give a diagram showing a 9-point square stencil. Giving the Taylor's expansion series for the four vortices of the square, derive an expression for the Laplacian, $\nabla^2 u$. Consider $\Delta x = \Delta y = \Delta$.	(16)
A.		