Abu Dhabi Polytechnic Meteorology Department

MET-324 NWP \& Num. Analysis (CRN: 2302)
 Instructor: Dr. Nageswara Rao G.

Mid Examination $2^{\text {nd }}$ Semester (2020-21)

Date: 03.03.2021 (10-11.30 AM)
(Max. Points: 100)

1. \qquad equations are more accurate.
a. Quasi geostrophic
b. Basic hydrodynamic
c. Non-hydrostatic
d. Hydrostatic

Answer: \qquad
2. To study the land-sea breeze circulation, \qquad can be used.
a. Spectral model
b. Hydrostatic model
c. Non-hydrostatic model
d. Primitive equation model

Answer: \qquad
3. Explain the following NWP concepts:
a) Initialization, b) Data Assimilation and c) Parameterization

Answer:
4. Calculate the number of time steps required to give a one-day forecast by a grid point model with a horizontal resolution of $\Delta x=5 \mathrm{~km}$, a) if sound waves are allowed ($c=320 \mathrm{~m} / \mathrm{s}$) and b) if sound waves are not allowd ($c=80 \mathrm{~m} / \mathrm{s}$) in the model.
From the above, explain the need for the filtering of sound waves from the model equations.

Answer:
5. Why hydrostatic assumption cannot be used in mesoscale models? Explain what other assumptions can be used in these models to filter out sound waves?

Answer:
6. Calculate the sigma (σ) values for the model reference pressure of 60 kPa for the given 5 locations, as shown in the diagram given below. Model top pressure is given as 10 kPa . Surface pressures are given in kPa . Write your results in the table given below the diagram.

Location	Surface Pressure (kPa)	sigma $\left(\sigma_{60 \mathrm{kPa}}\right)$
1	101	
2	85	
3	70	
4	85	
5	90	

7. How you calculate the pressure gradient force (PGF) on level isobaric surfaces? Why the PGF calculation on sigma coordinates introduces errors? How you correct the error?

Answer:
8. Write the Taylor expansion series (upto 2 nd derivative) for $u(i-1, j), u(i-1, j+1)$ and $u(i+1, j-1)$ at the three grid points (1,2 and 3 colored in blue circles) in the 9 -point stencil as shown in the diagram given below. Assume the same grid space in x and y directions $(\Delta x=\Delta y=\Delta)$.

Answer:
9. With the help of a 9-point square stencil (given in the diagram below) and centered difference formula for the derivatives, obtain a finite difference expression for the mixed $2^{\text {nd }}$ derivative at the central grid point (i, j).

Answer:
10. What the Jacobian, $J(\psi, \zeta)$ expresses? Give the mathematical formula for formula for $J(\psi, \zeta)$ and obtain the finite difference expression using centered difference formula for the derivatives, with the help of the 5-point diamond stencil, given in the diagram below. Assume $\Delta x=\Delta y=\Delta$.

Answer:

