

ABU DHABI POLYTECHNIC ACADEMIC SUPPORT DEPARTMENT

MATH 1010 – Calculus I

Final Exam Sem.2 - 2024/2025 2 hours

Calculators are allowed

No additional materials are required

STUDENT NAME				
STUDENT NUMBER				
		DEPARTMENT ASD		
	Please circle your CRN#:			
	Dr. Bassem: 4493, 4512, 4558, 462	29 Dr. Georgios: 4275, 4380		
	Mr. Tinashe: 4336, 4433, 4591	Dr. Yasser: 4628		

READ THESE INSTRUCTIONS CAREFULLY

Write your *name*, *number*, CRN and department **clearly** in the boxes above.

Answer **all** questions.

Show **all** your working and use appropriate **units.** Otherwise, you may lose marks.

You may use a pencil for all your work.

Answers that are not **clearly readable**, if any, will not be marked.

- All mobile devices are not allowed during examination.
- Abu Dhabi Polytechnic considers cheating or attempting to cheat a serious offense that will result in disciplinary action taken against involved individuals.

Part	Score	
Part A.I	/21	
Part A.II	/12	
Part A.III	/6	
Part B.I	/20	
Part B.II	/10	
Part B.III	/11	

Total	/80
-------	-----

Part A.I: CLOs 2,3 (21 grades)

Find the derivative.

1)
$$\frac{1}{2}x^8 - \frac{1}{3}x^3$$

A) $\frac{1}{2}x^7 - \frac{1}{3}x^2$
B) $4x^9 - x^4$
C) $4x^8 - x^3$
D) $4x^7 - x^2$

Find the derivative of the function.

2)
$$f(x) = (3x^4 + 8)^2$$

A) $6x^4 + 16$ B) $144x^{15} + 96x^3$ C) $72x^7 + 192x^3$ D) $9x^{16} + 64$

Find dy/dx by implicit differentiation. If applicable, express the result in terms of x and y.

3)
$$7y^2 + 3x^2 - 11 = 0$$

A) $\frac{-3x}{7}$
B) $\frac{-3x}{7y}$
C) $\frac{-3x^2}{14y}$
D) $\frac{-6x + 11}{14y}$

Find the indicated derivative of the function.

4)
$$f'''(x)$$
 for $f(x) = (x + 1)^{-1}$
A) $6(x + 1)^{-3}$ B) $6(x + 1)^{-4}$ C) $-6(x + 1)^{-3}$ D) $-6(x + 1)^{-4}$

Assume that all variables are implicit functions of time t. Find the indicated rate.

Find those values of x for which the given function is increasing and those values of x for which it is decreasing. 7.2 5.

6)
$$y = 7x^2 - 5x$$

A) Increasing for $x > \frac{5}{14}$, decreasing for $x < \frac{5}{14}$
B) Increasing for $x < \frac{5}{14}$, decreasing for $x > \frac{5}{14}$
C) Increasing for $x > -\frac{5}{14}$, decreasing for $x < -\frac{5}{14}$
D) Increasing for $x > \frac{5}{7}$, decreasing for $x < \frac{5}{7}$

Find any relative maximum or minimum points of the given function.

7)
$$y = 4x^2 - 24x + 32$$
B) Minimum at (-4, 3)A) Minimum at (-4, 3)B) Minimum at (3, -4)C) Maximum at (4, -3)D) Maximum at (-3, 4)

7)

2)

5)

~

Part A.II: CLOs 4,5 (12 grades)

Integrate the given expression.

8)
$$\int (6x^2 + 1) dx$$

A) $2x^3 + C$
B) $12x + C$
C) $x + C$
D) $2x^3 + x + C$

Find the integral.

9)
$$\int \sin^3 x \cos x \, dx$$

A) $\frac{\sin^4 x}{3} + C$
B) $\frac{\sin^4 x}{4} + C$
C) $\frac{\sin^3 x}{3} + C$
D) $\frac{\sin^3 x}{4} + C$

Integrate the function.

10)
$$\int x^4 e^{-x^5} dx$$

A) $e^{-x^5} + C$
B) $-\frac{1}{5}e^{-x^5} + C$
C) $-5e^{-x^6} + C$
D) $-\frac{1}{5}e^{-x^6} + C$

11)

11)
$$\int \frac{9e^{9x} dx}{e^{9x} + 1}$$

A) $\ln(e^{9x} + 1) + C$
B) $e^{9x} \ln(e^{9x} + 1) + C$
C) $9 \ln(e^{9x} + 1) + C$
D) $\frac{1}{(e^{9x} + 1)^2} + C$

Part A.III: CLOs 1,6 (6 grades)

Find the exact area under the 12) y = 2x + 7; between	12)			
A) 26	B) 18	C) 52	D) 9	· · · · · · · · · · · · · · · · · · ·
Use L'Hospital's rule to find 13) $\lim_{x \to 0} \frac{\cos 3x - 1}{x^2}$	the limit.			13)
A) 0	B) $\frac{3}{2}$	C) $-\frac{9}{2}$	D) ∞	

Part B.I: CLOs 2, 3 (20 grades)

Question 1 (12 grades)

1) Find the derivative of: $y = x^3 \sin(x)$.

2) Find the derivative of: $y = \ln(e^x - 5)$.

3) Find the expression of acceleration a(t), if the velocity is: $v(t) = \sqrt{t^3 - 2t}$.

4) Find the rate of change of efficiency $E(T) = 100 \left(\frac{T}{T+300}\right)$, where T is the temperature.

Question 2 (4 grades)

Find the <u>equation</u> of the tangent line to: y = cos(x) + 2x at x = 0.

Question 3 (4 grades)

A particle moves along a path defined by the parametric equations:

 $x(t) = -t^2 + 2t$ and $y(t) = t^2 + 3t$ where x(t) and y(t) are in meters, and t is in seconds.

a) Find the components of the velocity vector $v_x(t)$ and $v_y(t)$ at any time t.

b) Find the magnitude and direction of the velocity at t = 2 seconds.

Part B.II: CLOs 4, 5 (10 grades)

Question 1 (6 grades)

Find the integrals below:

1)
$$\int 5x \cos{(x^2)} dx =$$

2)
$$\int \sqrt{2x+5} \, dx =$$

Question 2 (4 grades)

Find the integral $\int \frac{1}{(2x+1)^n} dx$ for the value of n below:

a) For
$$n = 2$$
:

b) For n = 1:

Part B.III: CLO 6 (11 grades)

Question 1 (5 grades)

Find the area bounded by y = 7x and y = 2x from x = 1 to x = 3.

Question 2 (6 grades)

a) Find the expression of the displacement s(t) if the velocity $v(t) = t^2 + 3\pi$, where the time t is in seconds and s(t) is in meter, given that s = 7 when t = 0.

b) Find the values of the velocity and displacement at t = 3 seconds.

Derivatives	Integrals
$(u^n)' = nu^{n-1}u'$	$\int (du + dv) = u + v + c$
$(\sin u)' = u' \cos u$	$\int u^n du = \frac{u^{n+1}}{n+1} + c (n \neq -1)$
$(\cos u)' = -u' \sin u$	$\int \frac{1}{u} du = \ln u + c$
$(\ln u)' = \frac{u'}{u}$	$\int \sin u du = -\cos u + c$
$(e^u)' = u'e^u$	$\int \cos u du = \sin u + c$
$(u \pm v)' = u' \pm v'$	$\int e^u du = e^u + c$
$(u \cdot v)' = u' \cdot v + u \cdot v'$	Area under the curve $= \int_a^b y dx$
$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$	Area between curves = $\int_{a}^{b} (y_{\text{High}} - y_{\text{Low}}) dx$

Calculus - I - Formulae

• The equation of the line passing through (x_1, y_1) and having a slope m is given by:

$$y - y_1 = m(x - x_1)$$

• Magnitude of the resultant of a vector V is given by:

$$V=\sqrt{V_x^2+V_y^2}$$

• Reference angle of the resultant of vector V is given by:

$$\theta_{\rm ref} = \tan^{-1} \left| \frac{V_y}{V_x} \right|$$

Quadrant-specific Direction (θ) :

$$\theta = \begin{cases} \theta_{\rm ref} & \text{if Quadrant I} (V_x > 0, V_y > 0) \\ 180^\circ - \theta_{\rm ref} & \text{if Quadrant II} (V_x < 0, V_y > 0) \\ 180^\circ + \theta_{\rm ref} & \text{if Quadrant III} (V_x < 0, V_y < 0) \\ 360^\circ - \theta_{\rm ref} & \text{if Quadrant IV} (V_x > 0, V_y < 0) \end{cases}$$