# **AES731 Electrical Technology I**

## Final Exam AY2016-2017 Semester 1

## Formulas, Data, and Conversions

### **General**

$$e = -1.6 \times 10^{-19} C$$
  
 $1 hp = 746 W$   
 $1 rpm = \frac{2\pi}{60} rad/s$ 

### **Electric Fields**

F = 
$$k \frac{q_1 q_2}{d^2}$$
;  $k = 9.1 \times 10^9 Nm^2/C^2$   
E =  $\frac{F}{q} = \frac{V}{d}$   
 $V = \frac{E}{Q}$   
 $I = \frac{Q}{t}$ 

#### **Kirchhoff's Laws**

$$\sum_{l_{node}} I_{node} = 0$$

$$\sum_{l_{loop}} V_{loop} = 0$$

## Y-∆ conversions

$$R_a = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

$$R_b = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

$$R_{1} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{c}}$$

$$R_{2} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{a}}$$

$$R_{3} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{b}}$$

## **Inductors and Capacitors**

$$CEMF = -L\frac{\Delta I}{\Delta t}$$

$$T_L = \frac{L}{R}$$

$$V = L\frac{\Delta I}{\Delta t}$$

$$C = \frac{Q}{V}$$

$$C = k\frac{A}{d}; k = 8.85 \times 10^{-12} F/m$$

### **DC Generators**

$$E_g = k\varphi N$$

#### **DC Motors**

$$T = k\varphi I_a$$
$$E_{CEMF} = k\varphi N$$

### **Batteries**

$$Battery\ Rating = \frac{SG_{FC} - SG_{DR}}{Normal\ Gravity\ Drop \times 0.001} \times 100\%$$

### **Uniformly Accelerated Rotational Motion**

$$\begin{split} &\omega = \omega_0 + \alpha t \\ &\omega^2 = \omega_0^2 + 2\alpha\Delta\theta \\ &\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2 \end{split}$$



Figure 1

| 2 | norn<br>spec | specific gravity of a 12-V lead-acid battery has an average full-charge of 1.250 and has a mal gravity drop of 160 points at a 12-hour discharge rate. Currently the battery has a cific gravity 1.180. The battery is rated at 1,000 amp hours. |     |
|---|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (a)          | Name an instrument that can be used to measure the battery's specific gravity.                                                                                                                                                                   | [1] |
|   | (b)          | Calculate the charge on the battery                                                                                                                                                                                                              | [3] |
|   | (c)          | Calculate the amp-hours remaining in the battery                                                                                                                                                                                                 | [3] |
|   | (d)          | The battery is connected to a charger that supplies an average of 50 amps. Calculate the total amp-hours in the battery after 10 hours of charging.                                                                                              | [3] |

| 3 | (a) | State the three requirements for electromagnetic induction. | [3] |
|---|-----|-------------------------------------------------------------|-----|
|   |     |                                                             |     |
|   |     |                                                             |     |
|   |     |                                                             |     |
|   |     |                                                             |     |

(b) A conductor AB is placed between two magnetic poles as shown in Figure 3a.



Figure 3a

- (i) Draw the magnetic field lines in the space between the poles. [1]
- (ii) Mark the polarity of the induced emf when the conductor moves upwards. [1]
- (iii) Determine the direction of the conventional current in conductor AB when it moves downwards. [3]

(c) Another conductor is formed in the shape of a flat coil and placed between the same magnetic poles as shown in **Figure 3b.** [2]



Figure 3b

As the coil starts to rotate clockwise predict the polarity of terminals A and B.



(a) Without a commutator, and

[1]

**(b)** With a commutator





Figure 4

- (c) A dc generator has an armature current of 65 A, a field current of 12 A, and armature resistance of 3  $\Omega$  and a field resistance of 2  $\Omega$ . Calculate the total copper loss in the generator.
- [2]

(d) Provide the meanings or functions of the following terms or components:

[13]

- (A) Terminal voltage
- (B) Armature
- (C) Stator
- (D) Field
- (E) Voltage rating
- (F) Current rating
- **(G)** Shut-wound generator
- (H) Series-wound generator
- (I) Flat-compounded generator
- (J) Hysteresis losses
- (K) Mechanical losses
- (L) Rotor
- (M) Voltage regulator

**5 Figure 5a** shows the end view of a theoretical dc motor.



Figure 5a

- (a) On Figure 5a, show the direction of the force on each of the conductors due to its presence in the magnetic field. [4]
- (b) Based on the directions of the forces you determined in (a), determine the sense of rotation of the rotor. [1]
- (c) As the motor runs, a counter electromotive force is developed in the armature, as shown in the armature equivalent circuit in **Figure 5b.**



Figure 5b

Given that  $V_s = 250 \, V$ ,  $R_a = 2.5 \, \Omega$  and  $E_{CEMF} = 70 \, V$ , calculate the armature current. [4]