

ABU DHABI POLYTECHNIC EMET

Power Transmission/
 EMEE-304

Final Examination
Semester 2- 2016/2017
120 minutes
Instructor Shoaib Hussain

Students answer on the question paper
Calculators, drawing kits and dictionaries are allowed
No additional materials are required
\qquad

READ THESE INSTRUCTIONS CAREFULLY

Write your name, number, and department clearly in the boxes above.
Answer all questions.
Show all your working and use appropriate units. Otherwise, you may lose marks.

You may use a pencil for all your work.
Answers that are not clearly readable, if any, will not be marked.

Question	Score
Q1	126
Q2	$/ 12$
Q3	122

\square
Total

All mobile devices are not allowed during examination.
Abu Dhabi Polytechnic considers cheating or attempting to cheat a serious offense that will result in disciplinary action taken against involved individuals.

Formulae

$$
\begin{gathered}
i_{c}=c \cdot v_{c}^{\prime} \\
v_{L}=L \cdot i_{L}^{\prime} \\
w_{c}=\frac{1}{2} c \cdot v_{c}^{2} \\
w_{L}=\frac{1}{2} L \cdot i_{L}^{2}
\end{gathered}
$$

Standard form of $1^{\text {st }}$ order differential equation:

$$
\begin{gathered}
y^{\prime}(t)+p(t) \cdot y(t)=q(t) \\
\mu(t)=e^{\int p(t) d t}
\end{gathered}
$$

Solution for the $1^{\text {st }}$ order differential equation:

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) \cdot q(t) d t+\frac{c}{\mu(t)}
$$

Solution for the $1^{\text {st }}$ order total transient response:

$$
F(t)=F_{f}+A e^{s t}=F_{f}+\left(F(0)-F_{f}\right) e^{s t}
$$

F_{f} is the forced response, $F(0)$ is the initial response
Natural response for $2^{\text {nd }}$ order systems:
If the roots are real and distinct: $F(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}$
If the roots are complex: $F(t)=B e^{\alpha_{1} t} \cdot \sin \left(w_{n} t+\beta\right)$
Energy transfer:

$$
w_{\text {transferred }}=\int v(t) \cdot i(t) d t
$$

w is the energy in all cases.

1. Find the solution for the input current in the circuit given below. [CLO: 1,2]

The switch stays closed. $L_{1}=20 \mathrm{mH}, L_{2}=40 \mathrm{mH}, L_{3}=60 \mathrm{mH}, R_{1}=22 \Omega=R_{2}$. Let $V_{s}=$ 10 V .
a) Simplify the circuit and show the reduced equivalent circuit. Also calculate the time constant of the system. [6]
b) Using your answer to a), write the differential equation for the circuit and solve for the input current $i_{s}(t)$. [10]
c) Derive an expression for the total energy transferred from the source (hint: use your answer to b) and use the power-integral equation to obtain an expression for the energy transfer) [10]
2. Consider the $2^{\text {nd }}$ order system shown below. [CLO 3,4]

a) Find the roots of the system. [6]
b) Write down the equation for the natural response of the source current using your answer to a). [2]
c) What will be the steady-state voltage of the capacitor ($\mathrm{t}-\mathrm{>} \boldsymbol{\infty}$) ? [4]
3. You need to calculate the total response of the voltage [$V_{x}(\mathrm{t})$] across the 3 k ohm resistor. Consider the circuit given below. [CLO: 4,6]

The switch is initially open and closes at $t=0$.
a) Find the roots of the system and the time constant for voltage V_{x}. [6]
b) Find the forced response of the voltage V_{x}. [4]
c) Find the independent conditions of the circuit. [4]
d) Find the dependent initial condition of V_{x} if needed. [4]
e) Find the total response of the voltage V_{x} using all your previous answers. [4]

BONUS

Find the expression for the energy transferred to the 3 k resistor using your answer to previous question.

